arviz_stats.base.array_stats.loo_mixture#
- array_stats.loo_mixture(ary, obs_axes, chain_axis=-2, draw_axis=-1, log_jacobian=None)#
Compute mixture importance sampling LOO (Mix-IS-LOO).
- Parameters:
- aryarray_like
Full log-likelihood array.
- obs_axes
tupleofint Axes corresponding to observation dimensions.
- chain_axis
int, default -2 Axis for chains.
- draw_axis
int, default -1 Axis for draws.
- log_jacobianarray_like, optional
Log-Jacobian adjustment for variable transformations.
- Returns:
- elpd_iarray_like
Pointwise expected log predictive density.
- p_loo_iarray_like
Pointwise effective number of parameters.
- mix_log_weightsarray_like
Mixture log weights.